Possibilistic Networks: Parameters Learning from Imprecise Data and Evaluation strategy

نویسندگان

  • Maroua Haddad
  • Philippe Leray
  • Nahla Ben Amor
چکیده

There has been an ever-increasing interest in multi-disciplinary research on representing and reasoning with imperfect data. Possibilistic networks present one of the powerful frameworks of interest for representing uncertain and imprecise information. This paper covers the problem of their parameters learning from imprecise datasets, i.e., containing multi-valued data. We propose in the first part of this paper a possibilistic networks sampling process. In the second part, we propose a likelihood function which explores the link between random sets theory and possibility theory. This function is then deployed to parametrize possibilistic networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Possibilistic networks parameter learning: Preliminary empirical comparison

Like Bayesian networks, possibilistic ones compactly encode joint uncertainty representations over a set of variables. Learning possibilistic networks from data in general and from imperfect or scarce data in particular, has not received enough attention. Indeed, only few works deal with learning the structure and the parameters of a possibilistic network from a dataset. This paper provides a p...

متن کامل

Learning possibilistic networks from data: a survey

Possibilistic networks are important tools for modelling and reasoning, especially in the presence of imprecise and/or uncertain information. These graphical models have been successfully used in several real applications. Since their construction by experts is complex and time consuming, several researchers have tried to learn them from data. In this paper, we try to present and discuss releva...

متن کامل

Learning Possibilistic Networks from Data

We introduce a method for inducing the structure of (causal) possibilistic networks from databases of sample cases. In comparison to the construction of Bayesian belief networks, the proposed framework has some advantages, namely the explicit consideration of imprecise (set-valued) data, and the realization of a controlled form of information compression in order to increase the eeciency of the...

متن کامل

A Naive Bayes Style Possibilistic Classifier

Naive Bayes classifiers can be seen as special probabilistic networks with a star-like structure. They can easily be induced from a dataset of sample cases. However, as most probabilistic approaches, they run into problems, if imprecise (i.e, set-valued) information in the data to learn from has to be taken into account. An approach to handle uncertain as well imprecise information, which recen...

متن کامل

Possibilistic Graphical Models

Graphical modeling is an important method to efficiently represent and analyze uncertain information in knowledge-based systems. Its most prominent representatives are Bayesian networks and Markov networks for probabilistic reasoning, which have been well-known for over ten years now. However, they suffer from certain deficiencies, if imprecise information has to be taken into account. Therefor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1607.03705  شماره 

صفحات  -

تاریخ انتشار 2016